黄志宣1,2,3 , 王恩多1,2,3,*
1中国科学院分子细胞科学卓越创新中心/上海生物化学与细胞生物学研究所,分子生物学国家重点实验室, 上海 200031 2中国科学院大学,北京 100864 3上海科技大学生命科学与技术学院,上海 201210

摘 要:

Dnmt2 的同源基因首次在酵母基因组中被发现,由于其蛋白质序列与已知的DNA 甲基转移酶家族成员DNMT1 的序列高度同源,所以被认为是一个DNA 甲基转移酶,归属于DNA 甲基转. 移酶家族。然而,一直没有足够的证据证明Dnmt2 对DNA 具有甲基转移能力。直到2006 年发现Dnmt2 有催化tRNAAsp(GUC) 甲基化修饰的能力,才确定Dnmt2 的功能是一种RNA 甲基转移酶,负责催化tRNA 上第38位胞嘧啶的甲基化修饰,但Dnmt2 识别和催化底物tRNA 的分子机制仍未被全面阐明。之前研究表明,Q34 可以增强Dnmt2 对tRNAAsp(GUC) 的催化活力;王恩多课题组发现人源Dnmt2 对底物tRNA 的关键识别位点是G34 或I34,Dnmt2 识别底物依赖于底物tRNA 的反密码子环、D 茎和可变环的关键位点和完整的三级结构。此外,Dnmt2 在细胞代谢、胚胎发育、有丝分裂、表观遗传、肿瘤与免疫等方面发挥着重要作用。该文从进化保守性、底物识别机理、蛋白质结构与功能、修饰之间的调控等方面综述了Dnmt2 在RNA 修饰中的最新研究进展。

通讯作者:王恩多 , Email:edwang@sibcb.ac.cn

The substrate recognition mechanism and biological function of Dnmt2
HUANG Zhi-Xuan1,2,3 , WANG En-Duo1,2,3,*
1Center for Excellence in Molecular Cell Science, Chinese Academy of Science / Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China 2University of Chinese Academy of Sciences, Beijing 100864, China 3School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China


The homologous gene of Dnmt2 was found in the yeast genome for the first time. Due to its protein sequence being highly homologous with the amino acid sequence of the known DNA methyltransferase family member DNMT1, Dnmt2 is considered a DNA methyltransferase and belongs to DNA methyltransferase family. However, there has not been enough evidence to prove that Dnmt2 can transfer methyl groups to DNA. It was not until 2006 that Dnmt2 was discovered to catalyze tRNAAsp(GUC) methylation, in which the classical biological function of Dnmt2 was determined. As an RNA methyltransferase, Dnmt2 can catalyze the methylation of cytosine at position 38 on tRNA. However, the mechanism of how Dnmt2 specifically recognizes and catalyzes the substrate tRNA remains unsolved. Previous studies have shown that Q34 can enhance the catalytic activity of Dnmt2 on tRNAAsp(GUC); the key site of human Dnmt2’s recognition of substrate RNA found by our laboratory is G34 or I34 in the anticodon loop, and Dnmt2’s recognition of the substrate depends on the tertiary structure of the substrate tRNAs, as well as key sites of the D-stem and variable loop. What’s more, Dnmt2 plays important roles in cell metabolism, embryonic development, mitosis, epigenetics, tumors, and immunity. Herein, we summarize the latest research progress of Dnmt2 on RNA modification from aspects of evolutionary conservation, substrate recognition mechanism, protein structure and function, and cross-talk between modifications.

Communication Author:WANG En-Duo , Email:edwang@sibcb.ac.cn

Back to top